Maximizing a class of submodular utility functions with constraints
نویسندگان
چکیده
Motivated by stochastic 0-1 integer programming problems with an expected utility objective, we study the mixed-integer nonlinear set: P = { (w, x) ∈ R× {0, 1}N : w ≤ f (a′x + d), b′x ≤ B } where N is a positive integer, f : R 7→ R is a concave function, a, b ∈ RN are nonnegative vectors, d is a real number and B is a positive real number. We propose a family of inequalities for the convex hull of P by exploiting submodularity of the function f (a′x + d) over {0, 1}N and the knapsack constraint b′x ≤ B. Computational effectiveness of the proposed inequalities within a branch-and-cut framework is illustrated using instances of an expected utility capital budgeting problem.
منابع مشابه
Maximizing Non-monotone/Non-submodular Functions by Multi-objective Evolutionary Algorithms
Evolutionary algorithms (EAs) are a kind of nature-inspired general-purpose optimization algorithm, and have shown empirically good performance in solving various real-word optimization problems. However, due to the highly randomized and complex behavior, the theoretical analysis of EAs is difficult and is an ongoing challenge, which has attracted a lot of research attentions. During the last t...
متن کاملBudgeted stream-based active learning via adaptive submodular maximization
Active learning enables us to reduce the annotation cost by adaptively selecting unlabeled instances to be labeled. For pool-based active learning, several effective methods with theoretical guarantees have been developed through maximizing some utility function satisfying adaptive submodularity. In contrast, there have been few methods for stream-based active learning based on adaptive submodu...
متن کاملGradient Methods for Submodular Maximization
In this paper, we study the problem of maximizing continuous submodular functions that naturally arise in many learning applications such as those involving utility functions in active learning and sensing, matrix approximations and network inference. Despite the apparent lack of convexity in such functions, we prove that stochastic projected gradient methods can provide strong approximation gu...
متن کاملAdaptive Submodular Optimization under Matroid Constraints
Many important problems in discrete optimization require maximization of a monotonic submodular function subject to matroid constraints. For these problems, a simple greedy algorithm is guaranteed to obtain near-optimal solutions. In this article, we extend this classic result to a general class of adaptive optimization problems under partial observability, where each choice can depend on obser...
متن کاملMaximizing Nonmonotone Submodular Functions under Matroid or Knapsack Constraints
Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the firs...
متن کاملMaximizing non-monotone submodular set functions subject to different constraints: Combined algorithms
We study the problem of maximizing constrained non-monotone submodular functions and provide approximation algorithms that improve existing algorithms in terms of either the approximation factor or simplicity. Our algorithms combine existing local search and greedy based algorithms. Different constraints that we study are exact cardinality and multiple knapsack constraints. For the multiple-kna...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 162 شماره
صفحات -
تاریخ انتشار 2017