Maximizing a class of submodular utility functions with constraints

نویسندگان

  • Jiajin Yu
  • Shabbir Ahmed
چکیده

Motivated by stochastic 0-1 integer programming problems with an expected utility objective, we study the mixed-integer nonlinear set: P = { (w, x) ∈ R× {0, 1}N : w ≤ f (a′x + d), b′x ≤ B } where N is a positive integer, f : R 7→ R is a concave function, a, b ∈ RN are nonnegative vectors, d is a real number and B is a positive real number. We propose a family of inequalities for the convex hull of P by exploiting submodularity of the function f (a′x + d) over {0, 1}N and the knapsack constraint b′x ≤ B. Computational effectiveness of the proposed inequalities within a branch-and-cut framework is illustrated using instances of an expected utility capital budgeting problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximizing Non-monotone/Non-submodular Functions by Multi-objective Evolutionary Algorithms

Evolutionary algorithms (EAs) are a kind of nature-inspired general-purpose optimization algorithm, and have shown empirically good performance in solving various real-word optimization problems. However, due to the highly randomized and complex behavior, the theoretical analysis of EAs is difficult and is an ongoing challenge, which has attracted a lot of research attentions. During the last t...

متن کامل

Budgeted stream-based active learning via adaptive submodular maximization

Active learning enables us to reduce the annotation cost by adaptively selecting unlabeled instances to be labeled. For pool-based active learning, several effective methods with theoretical guarantees have been developed through maximizing some utility function satisfying adaptive submodularity. In contrast, there have been few methods for stream-based active learning based on adaptive submodu...

متن کامل

Gradient Methods for Submodular Maximization

In this paper, we study the problem of maximizing continuous submodular functions that naturally arise in many learning applications such as those involving utility functions in active learning and sensing, matrix approximations and network inference. Despite the apparent lack of convexity in such functions, we prove that stochastic projected gradient methods can provide strong approximation gu...

متن کامل

Adaptive Submodular Optimization under Matroid Constraints

Many important problems in discrete optimization require maximization of a monotonic submodular function subject to matroid constraints. For these problems, a simple greedy algorithm is guaranteed to obtain near-optimal solutions. In this article, we extend this classic result to a general class of adaptive optimization problems under partial observability, where each choice can depend on obser...

متن کامل

Maximizing Nonmonotone Submodular Functions under Matroid or Knapsack Constraints

Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the firs...

متن کامل

Maximizing non-monotone submodular set functions subject to different constraints: Combined algorithms

We study the problem of maximizing constrained non-monotone submodular functions and provide approximation algorithms that improve existing algorithms in terms of either the approximation factor or simplicity. Our algorithms combine existing local search and greedy based algorithms. Different constraints that we study are exact cardinality and multiple knapsack constraints. For the multiple-kna...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 162  شماره 

صفحات  -

تاریخ انتشار 2017